If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x2 + 3x = 40 Reorder the terms: 3x + 3x2 = 40 Solving 3x + 3x2 = 40 Solving for variable 'x'. Reorder the terms: -40 + 3x + 3x2 = 40 + -40 Combine like terms: 40 + -40 = 0 -40 + 3x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -13.33333333 + x + x2 = 0 Move the constant term to the right: Add '13.33333333' to each side of the equation. -13.33333333 + x + 13.33333333 + x2 = 0 + 13.33333333 Reorder the terms: -13.33333333 + 13.33333333 + x + x2 = 0 + 13.33333333 Combine like terms: -13.33333333 + 13.33333333 = 0.00000000 0.00000000 + x + x2 = 0 + 13.33333333 x + x2 = 0 + 13.33333333 Combine like terms: 0 + 13.33333333 = 13.33333333 x + x2 = 13.33333333 The x term is x. Take half its coefficient (0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. + 0.25 + x2 = 13.33333333 + 0.25 Combine like terms: + 0.25 = 1.25 1.25 + x2 = 13.33333333 + 0.25 Combine like terms: 13.33333333 + 0.25 = 13.58333333 1.25 + x2 = 13.58333333 Factor a perfect square on the left side: (x + 0.5)(x + 0.5) = 13.58333333 Calculate the square root of the right side: 3.685557397 Break this problem into two subproblems by setting (x + 0.5) equal to 3.685557397 and -3.685557397.Subproblem 1
x + 0.5 = 3.685557397 Simplifying x + 0.5 = 3.685557397 Reorder the terms: 0.5 + x = 3.685557397 Solving 0.5 + x = 3.685557397 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + x = 3.685557397 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + x = 3.685557397 + -0.5 x = 3.685557397 + -0.5 Combine like terms: 3.685557397 + -0.5 = 3.185557397 x = 3.185557397 Simplifying x = 3.185557397Subproblem 2
x + 0.5 = -3.685557397 Simplifying x + 0.5 = -3.685557397 Reorder the terms: 0.5 + x = -3.685557397 Solving 0.5 + x = -3.685557397 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + x = -3.685557397 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + x = -3.685557397 + -0.5 x = -3.685557397 + -0.5 Combine like terms: -3.685557397 + -0.5 = -4.185557397 x = -4.185557397 Simplifying x = -4.185557397Solution
The solution to the problem is based on the solutions from the subproblems. x = {3.185557397, -4.185557397}
| 3x^2+3x=25 | | x^2+5=20 | | 7ln(6x)=63 | | -3f/5=-4/15 | | 8y-4=6y+4 | | 6x+3=-33 | | 9(-x+4)=15 | | 4y-2=4y+2 | | 0.3w-4=.8-.2w | | 5+2qrstx=9 | | .75-9p=-0.6 | | 5/14=-2a/7 | | 50b+2.25=1.75 | | -3+2w+5.67-2.44w= | | 5/14=-2e/7 | | 5(3b^2-2b)+10b^2-1= | | -3k^2-7k=0 | | 3x=7x+12 | | 18(x-3)=19 | | -x^2+8x-2=0 | | 8+5x=33 | | ex=7x+12 | | 4-2x=12+6x | | 2w-3(w)-65=0 | | 5(3b*2-2b)+10b*2-1= | | 4(-2-3X)=[-6X-5(8-6X)] | | (4x^3)-(36x^2)+(96x)-(64)=0 | | 4.571428571a^2=1-7.428571429a | | x^2+38x+13= | | 5x+3y=63 | | 150+20x=150+15x | | (2x+3)(2x-6)=y |